
Visual	Basic	for	C#
Developers

A	Comprehensive	Guide
remko.online

2024

https://remko.online/


Chapter	1
Introduction	to	Visual	Basic	for	C#

Developers
Visual	Basic	(VB)	and	C#	are	both	powerful	programming

languages	that	are	part	of	the	.NET	ecosystem.	While	they	share
many	similarities,	they	also	have	distinct	characteristics	that
cater	to	different	programming	styles	and	preferences.	This
chapter	aims	to	bridge	the	gap	for	C#	developers	who	are

venturing	into	the	world	of	Visual	Basic,	providing	a
comprehensive	overview	of	its	syntax,	features,	and	unique

capabilities.

Understanding	Visual	Basic

Visual	Basic	is	an	event-driven	programming	language	known	for
its	simplicity	and	ease	of	use.	It	was	originally	designed	for	rapid
application	development	(RAD)	of	graphical	user	interface	(GUI)

applications.	The	language	allows	developers	to	create
applications	quickly,	thanks	to	its	straightforward	syntax	and

rich	set	of	built-in	functions.

Key	Features	of	Visual	Basic

1.	 Simplicity:	Visual	Basic's	syntax	is	often	considered	more
readable	and	easier	to	understand	than	C#.	For	example,

declaring	a	variable	in	Visual	Basic	is	as	simple	as:

Dim	myVariable	As	Integer



In	C#,	the	equivalent	would	be:

int	myVariable;

The	use	of	keywords	like	Dim 	in	VB	makes	it	clear	that	you	are
declaring	a	variable,	which	can	be	more	intuitive	for	beginners.

2.	 Event-Driven	Programming:	Visual	Basic	excels	in	event-
driven	programming,	which	is	a	paradigm	where	the	flow	of
the	program	is	determined	by	events	such	as	user	actions
(clicks,	key	presses,	etc.).	For	instance,	in	a	Windows	Forms
application,	you	can	easily	create	an	event	handler	for	a

button	click:

Private	Sub	Button1_Click(sender	As	Object,	e	As	EventArgs)	Handles	Button1.Click
				MessageBox.Show("Button	clicked!")

End	Sub

In	C#,	the	same	functionality	would	look	like	this:

private	void	Button1_Click(object	sender,	EventArgs	e)
{

				MessageBox.Show("Button	clicked!");
}

While	both	languages	achieve	the	same	result,	the	VB	syntax	is
often	seen	as	more	straightforward.

3.	 Rich	IDE	Support:	Visual	Basic	is	tightly	integrated	with
Visual	Studio,	which	provides	a	robust	development

environment.	Features	like	IntelliSense,	debugging	tools,	and
drag-and-drop	UI	design	make	it	easier	for	developers	to

create	applications	quickly.



Transitioning	from	C#	to	Visual	Basic

For	C#	developers,	transitioning	to	Visual	Basic	can	be	a	smooth
process,	especially	if	you	are	already	familiar	with	the	.NET
framework.	Here	are	some	key	differences	and	similarities	to

keep	in	mind:

Syntax	Differences

Case	Sensitivity:	C#	is	case-sensitive,	meaning	that
myVariable 	and	MyVariable 	would	be	considered	different
identifiers.	In	contrast,	Visual	Basic	is	not	case-sensitive,	so

both	would	refer	to	the	same	variable.
Control	Structures:	Both	languages	support	similar	control
structures	(if	statements,	loops,	etc.),	but	the	syntax	differs.
For	example,	a	simple	if 	statement	in	Visual	Basic	looks	like

this:

If	myVariable	>	10	Then
				MessageBox.Show("Greater	than	10")

End	If

In	C#,	it	would	be:

if	(myVariable	>	10)
{

				MessageBox.Show("Greater	than	10");
}

Object-Oriented	Programming

Both	Visual	Basic	and	C#	are	object-oriented	languages,
meaning	they	support	concepts	like	classes,	inheritance,	and



polymorphism.	However,	the	way	you	define	and	use	classes	can
differ	slightly.	For	example,	defining	a	class	in	Visual	Basic	is

done	as	follows:

Public	Class	MyClass
				Public	Property	MyProperty	As	String

End	Class

In	C#,	the	same	class	would	be	defined	like	this:

public	class	MyClass
{

				public	string	MyProperty	{	get;	set;	}
}

Error	Handling

Error	handling	in	Visual	Basic	is	often	done	using	the
Try...Catch...Finally 	structure,	similar	to	C#.	However,	VB
also	allows	for	a	more	straightforward	approach	with	the	On

Error 	statement,	which	can	be	useful	for	quick	error	handling	in
smaller	applications.

On	Error	GoTo	ErrorHandler
'	Code	that	may	cause	an	error

Exit	Sub

ErrorHandler:
				MessageBox.Show("An	error	occurred.")

In	C#,	you	would	typically	use	the	try-catch 	block:

try



{
				//	Code	that	may	cause	an	error

}
catch	(Exception	ex)

{
				MessageBox.Show("An	error	occurred:	"	+	ex.Message);

}

Practical	Example:	Creating	a	Simple	Application

To	illustrate	the	transition	from	C#	to	Visual	Basic,	let’s	create	a
simple	Windows	Forms	application	that	takes	user	input	and

displays	a	message.

Step	1:	Setting	Up	the	Form

In	Visual	Studio,	create	a	new	Windows	Forms	Application
project	in	Visual	Basic.	Drag	a	TextBox 	and	a	Button 	onto	the

form.

Step	2:	Writing	the	Code

Double-click	the	button	to	create	an	event	handler.	In	the	event
handler,	write	the	following	code:

Private	Sub	Button1_Click(sender	As	Object,	e	As	EventArgs)	Handles	Button1.Click
				Dim	userInput	As	String	=	TextBox1.Text

				MessageBox.Show("You	entered:	"	&	userInput)
End	Sub

Step	3:	Running	the	Application



When	you	run	the	application,	enter	text	into	the	TextBox 	and
click	the	button.	A	message	box	will	display	the	text	you

entered.	This	simple	example	demonstrates	how	easy	it	is	to
create	interactive	applications	in	Visual	Basic.

Conclusion

As	you	can	see,	Visual	Basic	offers	a	unique	approach	to
programming	that	can	be	appealing	to	C#	developers.	Its

simplicity,	event-driven	nature,	and	rich	IDE	support	make	it	a
valuable	tool	for	creating	applications	quickly	and	efficiently.	By
understanding	the	key	differences	and	similarities	between	the
two	languages,	C#	developers	can	leverage	their	existing
knowledge	while	exploring	the	capabilities	of	Visual	Basic.
For	further	reading	and	resources,	consider	checking	out	the
official	Microsoft	documentation	on	Visual	Basic	and	C#.	These
resources	provide	in-depth	information	and	examples	that	can
enhance	your	understanding	and	proficiency	in	both	languages.

https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/dotnet/csharp/


Chapter	2
Key	Differences	Between	C#	and

Visual	Basic
When	transitioning	from	C#	to	Visual	Basic	(VB.NET),	developers
often	encounter	a	variety	of	differences	that	can	impact	their
coding	style,	project	structure,	and	overall	development

experience.	Understanding	these	differences	is	crucial	for	a
smooth	transition	and	effective	programming	in	VB.NET.	This
chapter	will	explore	the	key	distinctions	between	C#	and	Visual

Basic,	providing	practical	examples	to	illustrate	these
differences.

Syntax	Differences

One	of	the	most	noticeable	differences	between	C#	and	Visual
Basic	is	their	syntax.	C#	is	a	C-style	language,	which	means	it
shares	a	syntax	structure	with	languages	like	C++	and	Java.
Visual	Basic,	on	the	other	hand,	has	a	more	English-like	syntax

that	can	be	easier	for	beginners	to	read	and	understand.

Example:	Variable	Declaration

In	C#,	variable	declaration	is	done	using	a	specific	type	followed
by	the	variable	name:

int	number	=	10;
string	message	=	"Hello,	World!";

In	Visual	Basic,	the	syntax	is	more	verbose	and	uses	the	Dim



keyword	to	declare	variables:

Dim	number	As	Integer	=	10
Dim	message	As	String	=	"Hello,	World!"

This	difference	in	syntax	can	initially	be	jarring	for	C#
developers,	but	it	also	allows	for	a	more	descriptive	approach	to

coding	in	Visual	Basic.

Case	Sensitivity

C#	is	a	case-sensitive	language,	meaning	that	Variable ,
variable ,	and	VARIABLE 	would	be	considered	three	distinct

identifiers.	Visual	Basic,	however,	is	not	case-sensitive.	This	can
lead	to	some	confusion	when	transitioning	between	the	two

languages.

Example:	Identifier	Usage

In	C#,	the	following	code	would	compile	without	errors:

int	myVariable	=	5;
int	MyVariable	=	10;	//	This	is	a	different	variable

In	Visual	Basic,	both	myVariable 	and	MyVariable 	refer	to	the
same	variable:

Dim	myVariable	As	Integer	=	5
Dim	MyVariable	As	Integer	=	10	'	This	will	cause	an	error

This	case	insensitivity	can	simplify	coding	in	Visual	Basic	but
may	require	C#	developers	to	adjust	their	naming	conventions.

Control	Structures



Both	C#	and	Visual	Basic	support	similar	control	structures,	such
as	loops	and	conditional	statements,	but	the	syntax	for	these

structures	differs	significantly.

Example:	If	Statement

In	C#,	an	if 	statement	is	structured	as	follows:

if	(number	>	0)
{

				Console.WriteLine("Positive	number");
}

else
{

				Console.WriteLine("Non-positive	number");
}

In	Visual	Basic,	the	same	logic	is	expressed	differently:

If	number	>	0	Then
				Console.WriteLine("Positive	number")

Else
				Console.WriteLine("Non-positive	number")

End	If

Notice	how	Visual	Basic	uses	the	Then 	keyword	and	requires	an
End	If 	statement	to	close	the	conditional	block.	This	can	make
the	code	appear	more	verbose	but	also	clearer	in	terms	of	flow.

Event	Handling

Event	handling	is	another	area	where	C#	and	Visual	Basic
diverge.	In	C#,	events	are	typically	handled	using	delegates	and



lambda	expressions,	while	Visual	Basic	provides	a	more
straightforward	approach	with	built-in	event	handling	syntax.

Example:	Button	Click	Event

In	C#,	you	might	handle	a	button	click	event	like	this:

button.Click	+=	(sender,	e)	=>	
{

				MessageBox.Show("Button	clicked!");
};

In	Visual	Basic,	the	same	event	can	be	handled	with	a	simpler
syntax:

Private	Sub	button_Click(sender	As	Object,	e	As	EventArgs)	Handles	button.Click
				MessageBox.Show("Button	clicked!")

End	Sub

This	built-in	event	handling	in	Visual	Basic	can	make	it	easier	for
developers	to	manage	user	interactions	without	needing	to

delve	into	more	complex	delegate	structures.

Properties	and	Getters/Setters

C#	uses	properties	with	explicit	getters	and	setters,	while	Visual
Basic	simplifies	this	with	a	more	concise	syntax.

Example:	Property	Declaration

In	C#,	a	property	might	look	like	this:

public	int	Age	{	get;	set;	}



In	Visual	Basic,	the	same	property	can	be	declared	as	follows:

Public	Property	Age	As	Integer

This	difference	in	property	declaration	can	make	Visual	Basic
code	appear	cleaner	and	more	straightforward,	especially	for

developers	who	prefer	a	more	declarative	style.

Conclusion

Understanding	the	key	differences	between	C#	and	Visual	Basic
is	essential	for	developers	looking	to	transition	between	these
two	languages.	From	syntax	and	case	sensitivity	to	control
structures	and	event	handling,	each	language	has	its	unique

characteristics	that	can	influence	coding	practices.	By
familiarizing	yourself	with	these	differences,	you	can	leverage
the	strengths	of	Visual	Basic	while	maintaining	the	efficiency

and	clarity	you’ve	developed	as	a	C#	programmer.
For	further	reading	on	specific	topics,	consider	exploring	the
official	Microsoft	documentation	on	Visual	Basic	and	C#.

https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/dotnet/csharp/


Chapter	3:	Setting	Up
Your	Development

Environment
When	transitioning	from	C#	to	Visual	Basic	(VB),	one	of	the	first
steps	is	to	set	up	your	development	environment.	This	chapter
will	guide	you	through	the	essential	tools	and	configurations

needed	to	create	a	seamless	coding	experience	in	Visual	Basic.

Choosing	the	Right	Integrated
Development	Environment	(IDE)

The	most	popular	IDE	for	Visual	Basic	development	is	Microsoft
Visual	Studio.	This	powerful	tool	provides	a	comprehensive	suite
of	features	that	enhance	productivity,	such	as	IntelliSense,
debugging	tools,	and	a	user-friendly	interface.	Visual	Studio
comes	in	several	editions,	including	Community	(free),
Professional,	and	Enterprise.	For	most	developers,	the

Community	edition	is	more	than	sufficient,	offering	all	the
essential	features	without	any	cost.

Installation	Steps

1.	 Download	Visual	Studio:	Visit	the	Visual	Studio	website
and	download	the	Community	edition.	The	website	will	guide

you	through	the	installation	process.
2.	 Select	Workloads:	During	installation,	you	will	be	prompted

to	select	workloads.	For	Visual	Basic	development,	choose	the

https://visualstudio.microsoft.com/


".NET	desktop	development"	workload.	This	will	install	the
necessary	components	for	building	Windows	applications

using	VB.
3.	 Complete	Installation:	Follow	the	prompts	to	complete	the

installation.	Once	finished,	launch	Visual	Studio.

Configuring	Your	IDE	for	Visual	Basic
After	installation,	it’s	essential	to	configure	Visual	Studio	to
optimize	your	development	experience.	Here	are	some	key

settings	to	consider:

Setting	the	Default	Language

Visual	Studio	allows	you	to	set	the	default	programming
language	for	new	projects.	To	set	Visual	Basic	as	your	default

language:

1.	 Open	Visual	Studio.
2.	 Go	to	Tools 	>	Options .
3.	 In	the	Options	dialog,	navigate	to	Projects	and	Solutions

>	General .
4.	 Under	"Default	language,"	select	"Visual	Basic."

Customizing	the	Environment

Visual	Studio	is	highly	customizable.	You	can	change	themes,
layouts,	and	even	keyboard	shortcuts	to	suit	your	preferences.
For	example,	if	you	prefer	a	dark	theme	to	reduce	eye	strain,

you	can	change	it	by:

1.	 Going	to	Tools 	>	Options .
2.	 Selecting	Environment 	>	General .
3.	 Under	"Color	theme,"	choose	"Dark."



Creating	Your	First	Visual	Basic
Project

Once	your	environment	is	set	up,	it’s	time	to	create	your	first
Visual	Basic	project.	Here’s	how	to	do	it:

1.	 Start	a	New	Project:	Click	on	Create	a	new	project 	from
the	start	window.

2.	 Select	Project	Type:	In	the	"Create	a	new	project"	dialog,
filter	by	language	and	select	"Visual	Basic."	Choose	"Windows
Forms	App	(.NET)"	for	a	graphical	user	interface	application.

3.	 Configure	Project	Details:	Enter	a	name	for	your	project,
select	a	location,	and	click	Create .

4.	 Design	Your	Form:	Visual	Studio	will	open	a	design	view
where	you	can	drag	and	drop	controls	(like	buttons,	text
boxes,	etc.)	from	the	Toolbox	onto	your	form.	For	example,
add	a	Button	control	and	set	its	Text 	property	to	"Click	Me"

in	the	Properties	window.
5.	 Write	Your	Code:	Double-click	the	button	to	open	the	code

editor.	You	can	write	an	event	handler	for	the	button	click.
Here’s	a	simple	example:

Private	Sub	Button1_Click(sender	As	Object,	e	As	EventArgs)	Handles	Button1.Click
								MessageBox.Show("Hello,	Visual	Basic!")

				End	Sub

This	code	will	display	a	message	box	when	the	button	is	clicked,
demonstrating	how	to	handle	events	in	Visual	Basic.

Version	Control	Integration
As	you	start	developing	applications,	it’s	crucial	to	manage	your
code	effectively.	Integrating	version	control,	such	as	Git,	into



your	development	environment	can	help	you	track	changes	and
collaborate	with	others.	Visual	Studio	has	built-in	support	for	Git,

making	it	easy	to	set	up.

1.	 Initialize	a	Git	Repository:	In	your	project,	go	to	View 	>
Team	Explorer .	Click	on	Home 	and	then	New 	to	create	a	new

repository.
2.	 Commit	Changes:	After	making	changes	to	your	code,	you

can	commit	them	by	going	to	the	Changes 	section	in	Team
Explorer,	entering	a	commit	message,	and	clicking	Commit

All .
3.	 Push	to	Remote	Repository:	If	you	have	a	remote

repository	(like	GitHub),	you	can	push	your	changes	by
clicking	on	Sync 	and	then	Push .

Additional	Tools	and	Extensions
To	enhance	your	development	experience	further,	consider
exploring	various	extensions	available	in	Visual	Studio.	For
example,	the	ReSharper	extension	provides	advanced	code
analysis	and	refactoring	tools,	while	Visual	Studio	Live	Share

allows	real-time	collaboration	with	other	developers.
You	can	find	and	install	extensions	by	going	to	Extensions 	>

Manage	Extensions 	in	Visual	Studio.

Resources	for	Learning	Visual	Basic
As	you	embark	on	your	journey	to	learn	Visual	Basic,	numerous
resources	can	help	you	along	the	way.	Websites	like	Microsoft
Learn	offer	free	tutorials	and	documentation.	Additionally,

forums	like	Stack	Overflow	can	be	invaluable	for	troubleshooting
and	community	support.

By	setting	up	your	development	environment	correctly	and

https://learn.microsoft.com/en-us/training/browse/?products=visual-studio
https://stackoverflow.com/


utilizing	the	right	tools,	you’ll	be	well	on	your	way	to	mastering
Visual	Basic.	The	next	chapter	will	delve	into	the	fundamental
concepts	of	Visual	Basic,	providing	a	solid	foundation	for	your

development	journey.



Chapter	4
Core	Language	Features	and	Syntax
Visual	Basic	(VB)	is	a	versatile	programming	language	that	has
evolved	significantly	over	the	years.	For	developers	transitioning
from	C#,	understanding	the	core	language	features	and	syntax
of	Visual	Basic	is	crucial	for	leveraging	its	capabilities	effectively.
This	chapter	will	delve	into	the	fundamental	aspects	of	Visual

Basic,	highlighting	its	syntax,	data	types,	control	structures,	and
more,	while	providing	practical	examples	to	illustrate	these

concepts.

1.	Basic	Syntax

Visual	Basic	employs	a	straightforward	and	readable	syntax,
which	is	one	of	its	most	appealing	features.	Unlike	C#,	which
uses	curly	braces	{} 	to	define	code	blocks,	Visual	Basic	uses
keywords	like	End	If ,	End	Sub ,	and	End	Function 	to	signify
the	end	of	a	block.	This	can	make	the	code	appear	more	verbose

but	also	more	readable,	especially	for	beginners.

Example:	A	Simple	If	Statement

In	C#,	an	if	statement	might	look	like	this:

if	(condition)
{

				//	Do	something
}

In	Visual	Basic,	the	equivalent	would	be:



If	condition	Then
				'	Do	something

End	If

Notice	how	the	Then 	keyword	is	used	to	indicate	the	start	of	the
block,	and	End	If 	marks	its	conclusion.	This	pattern	is

consistent	across	various	control	structures	in	Visual	Basic.

2.	Data	Types

Visual	Basic	supports	a	variety	of	data	types,	similar	to	C#.
However,	it	also	includes	some	unique	types	that	cater	to

specific	needs.	Here	are	some	of	the	most	commonly	used	data
types:

Integer:	Represents	whole	numbers.
Double:	Represents	floating-point	numbers.
String:	Represents	a	sequence	of	characters.
Boolean:	Represents	a	true	or	false	value.
Date:	Represents	date	and	time	values.

Example:	Declaring	Variables

In	C#,	you	might	declare	variables	like	this:

int	age	=	30;
string	name	=	"John";
bool	isActive	=	true;

In	Visual	Basic,	the	syntax	is	slightly	different:

Dim	age	As	Integer	=	30
Dim	name	As	String	=	"John"

Dim	isActive	As	Boolean	=	True



The	Dim 	keyword	is	used	to	declare	variables,	followed	by	the
variable	name,	the	As 	keyword,	and	the	data	type.

3.	Control	Structures

Control	structures	in	Visual	Basic	are	essential	for	directing	the
flow	of	execution	in	your	programs.	They	include	conditional

statements,	loops,	and	error	handling.

Conditional	Statements

In	addition	to	the	If...Then...Else 	structure,	Visual	Basic	also
supports	the	Select	Case 	statement,	which	is	similar	to	the

switch 	statement	in	C#.

Example:	Select	Case

Select	Case	dayOfWeek
				Case	1

								Console.WriteLine("Monday")
				Case	2

								Console.WriteLine("Tuesday")
				Case	Else

								Console.WriteLine("Another	day")
End	Select

Loops

Visual	Basic	provides	several	looping	constructs,	including
For...Next ,	While...End	While ,	and	Do...Loop .	Each	serves

a	different	purpose,	allowing	developers	to	iterate	over
collections	or	execute	code	repeatedly	based	on	conditions.



Example:	For	Loop

For	i	As	Integer	=	1	To	5
				Console.WriteLine(i)

Next

This	loop	will	print	the	numbers	1	through	5	to	the	console.

4.	Functions	and	Subroutines

In	Visual	Basic,	functions	and	subroutines	are	fundamental
building	blocks	for	code	organization	and	reuse.	A	function

returns	a	value,	while	a	subroutine	does	not.

Example:	Function

Function	AddNumbers(a	As	Integer,	b	As	Integer)	As	Integer
				Return	a	+	b
End	Function

Example:	Subroutine

Sub	DisplayMessage(message	As	String)
				Console.WriteLine(message)

End	Sub

To	call	these,	you	would	use:

Dim	result	As	Integer	=	AddNumbers(5,	10)
DisplayMessage("The	result	is	"	&	result)

5.	Error	Handling



Error	handling	in	Visual	Basic	is	accomplished	using	the
Try...Catch...Finally 	structure,	which	is	similar	to	C#'s

try...catch 	blocks.	This	allows	developers	to	gracefully	handle
exceptions	and	ensure	that	resources	are	released	properly.

Example:	Try...Catch

Try
				Dim	number	As	Integer	=	Convert.ToInt32("NotANumber")

Catch	ex	As	FormatException
				Console.WriteLine("Error:	"	&	ex.Message)

Finally
				Console.WriteLine("Execution	completed.")

End	Try

In	this	example,	if	the	conversion	fails,	the	error	message	will	be
displayed,	and	the	program	will	continue	executing	the	code	in

the	Finally 	block.

6.	Object-Oriented	Features

Visual	Basic	is	an	object-oriented	language,	supporting	concepts
such	as	encapsulation,	inheritance,	and	polymorphism.	Classes

and	objects	are	defined	similarly	to	C#,	but	with	a	few
syntactical	differences.

Example:	Class	Definition

Public	Class	Person
				Public	Property	Name	As	String
				Public	Property	Age	As	Integer

				Public	Sub	New(name	As	String,	age	As	Integer)



								Me.Name	=	name
								Me.Age	=	age

				End	Sub

				Public	Function	GetDetails()	As	String
								Return	Name	&	"	is	"	&	Age	&	"	years	old."

				End	Function
End	Class

Creating	an	instance	of	this	class	would	look	like	this:

Dim	person	As	New	Person("Alice",	25)
Console.WriteLine(person.GetDetails())

7.	Conclusion

Understanding	the	core	language	features	and	syntax	of	Visual
Basic	is	essential	for	C#	developers	looking	to	transition	into	this

language.	The	differences	in	syntax,	data	types,	control
structures,	and	object-oriented	features	provide	a	unique

programming	experience.	By	familiarizing	yourself	with	these
concepts,	you	can	effectively	harness	the	power	of	Visual	Basic

in	your	projects.
For	further	reading	and	practical	examples,	consider	exploring
the	official	Microsoft	Visual	Basic	documentation	to	deepen	your

understanding	and	enhance	your	skills.

https://docs.microsoft.com/en-us/dotnet/visual-basic/


Chapter	5
Working	with	Windows	Forms	and

Controls
Windows	Forms	is	a	powerful	graphical	user	interface	(GUI)
framework	that	allows	developers	to	create	rich	desktop
applications	for	the	Windows	operating	system.	For	C#

developers	transitioning	to	Visual	Basic	(VB.NET),	understanding
Windows	Forms	and	controls	is	essential,	as	it	provides	a	familiar
environment	for	building	applications.	This	chapter	will	delve
into	the	core	concepts	of	Windows	Forms,	explore	various

controls,	and	provide	practical	examples	to	illustrate	their	usage.

Understanding	Windows	Forms

Windows	Forms	is	part	of	the	.NET	Framework	and	serves	as	a
platform	for	developing	Windows-based	applications.	It	provides
a	set	of	classes	that	enable	developers	to	create	forms,	which
are	the	primary	building	blocks	of	a	Windows	application.	A	form
is	essentially	a	window	that	can	contain	various	controls,	such	as

buttons,	text	boxes,	labels,	and	more.

Key	Concepts

1.	 Forms:	A	form	is	a	container	for	controls	and	serves	as	the
main	interface	for	user	interaction.	In	VB.NET,	you	can	create
a	form	by	selecting	"Windows	Forms	App"	in	your	project

template.
2.	 Controls:	Controls	are	the	interactive	elements	on	a	form.

They	allow	users	to	input	data,	display	information,	and



perform	actions.	Common	controls	include:
Button:	A	clickable	element	that	performs	an	action	when

clicked.
TextBox:	A	field	where	users	can	enter	text.

Label:	A	static	text	element	used	to	display	information.
ComboBox:	A	drop-down	list	that	allows	users	to	select	an

item	from	a	list.
3.	 Events:	Events	are	actions	that	occur	in	response	to	user

interactions,	such	as	clicking	a	button	or	changing	the	text	in
a	text	box.	In	VB.NET,	you	can	handle	events	by	writing	event

handler	methods.

Creating	a	Simple	Windows	Form	Application

Let’s	create	a	simple	Windows	Forms	application	that
demonstrates	the	use	of	various	controls.	This	example	will

involve	a	form	that	allows	users	to	enter	their	name	and	display
a	greeting	message.

Step	1:	Setting	Up	the	Project

1.	 Open	Visual	Studio	and	create	a	new	project.
2.	 Select	"Windows	Forms	App	(.NET	Framework)"	and	name

your	project	"GreetingApp".

Step	2:	Designing	the	Form

In	the	Form	Designer,	you	can	drag	and	drop	controls	from	the
Toolbox	onto	your	form.	For	our	example,	we	will	add	the

following	controls:

Label:	To	prompt	the	user	for	their	name.
TextBox:	For	the	user	to	enter	their	name.



Button:	To	trigger	the	greeting	message.
Label:	To	display	the	greeting	message.

Step	3:	Adding	Controls

1.	 Drag	a	Label	onto	the	form	and	set	its	Text 	property	to
"Enter	your	name:".

2.	 Drag	a	TextBox	next	to	the	label	for	user	input.
3.	 Drag	a	Button	below	the	TextBox	and	set	its	Text 	property

to	"Greet	Me!".
4.	 Drag	another	Label	below	the	button	to	display	the	greeting

message.	Set	its	Text 	property	to	an	empty	string	initially.

Step	4:	Writing	the	Code

Double-click	the	button	to	create	an	event	handler	for	the	Click
event.	In	the	code	editor,	write	the	following	code:

Private	Sub	btnGreet_Click(sender	As	Object,	e	As	EventArgs)	Handles	btnGreet.Click
				Dim	userName	As	String	=	txtName.Text

				lblGreeting.Text	=	"Hello,	"	&	userName	&	"!	Welcome	to	the	Greeting	App!"
End	Sub

Explanation	of	the	Code

Private	Sub	btnGreet_Click :	This	defines	the	event	handler
for	the	button	click	event.

Dim	userName	As	String	=	txtName.Text :	This	line
retrieves	the	text	entered	in	the	TextBox	and	stores	it	in	the

userName 	variable.
lblGreeting.Text	=	"Hello,	"	&	userName	&	"!	Welcome
to	the	Greeting	App!" :	This	line	updates	the	text	of	the



greeting	label	to	include	the	user's	name.

Step	5:	Running	the	Application

Press	F5	to	run	the	application.	Enter	your	name	in	the	TextBox
and	click	the	"Greet	Me!"	button.	You	should	see	a	personalized

greeting	displayed	in	the	label.

Common	Controls	and	Their	Usage

1.	Button	Control

The	Button	control	is	one	of	the	most	commonly	used	controls	in
Windows	Forms	applications.	It	allows	users	to	perform	actions,
such	as	submitting	a	form	or	executing	a	command.	You	can

customize	the	appearance	of	a	button	by	changing	its
properties,	such	as	BackColor ,	ForeColor ,	and	Font .

Example:

btnSubmit.BackColor	=	Color.LightBlue
btnSubmit.ForeColor	=	Color.White

btnSubmit.Font	=	New	Font("Arial",	12,	FontStyle.Bold)

2.	TextBox	Control

The	TextBox	control	is	used	for	user	input.	You	can	set
properties	like	MaxLength 	to	limit	the	number	of	characters	a
user	can	enter,	and	PasswordChar 	to	mask	input	for	password

fields.

Example:



txtPassword.MaxLength	=	20
txtPassword.PasswordChar	=	"*"c

3.	ComboBox	Control

The	ComboBox	control	allows	users	to	select	an	item	from	a
drop-down	list.	You	can	populate	a	ComboBox	with	items

programmatically	or	through	the	designer.

Example:

cmbColors.Items.Add("Red")
cmbColors.Items.Add("Green")
cmbColors.Items.Add("Blue")

Handling	Events

Event	handling	is	a	crucial	aspect	of	Windows	Forms
applications.	Each	control	can	raise	events	that	you	can	respond
to	by	writing	event	handler	methods.	Common	events	include

Click ,	TextChanged ,	and	SelectedIndexChanged .

Example	of	Handling	a	ComboBox	Event:

Private	Sub	cmbColors_SelectedIndexChanged(sender	As	Object,	e	As	EventArgs)	Handles	cmbColors.SelectedIndexChanged
				Dim	selectedColor	As	String	=	cmbColors.SelectedItem.ToString()
				lblColorDisplay.Text	=	"You	selected:	"	&	selectedColor

End	Sub

In	this	example,	when	the	user	selects	a	color	from	the
ComboBox,	the	label	updates	to	display	the	selected	color.



Conclusion

Working	with	Windows	Forms	and	controls	in	Visual	Basic
provides	a	robust	framework	for	building	desktop	applications.
By	understanding	the	various	controls	and	how	to	handle	events,
C#	developers	can	quickly	adapt	to	VB.NET	and	create	engaging
user	interfaces.	The	practical	examples	provided	in	this	chapter
serve	as	a	foundation	for	further	exploration	of	Windows	Forms,
enabling	developers	to	build	more	complex	applications	with

ease.
For	more	information	on	Windows	Forms	and	controls,	you	can

refer	to	the	official	Microsoft	documentation	here.

https://docs.microsoft.com/en-us/dotnet/desktop/winforms/


Chapter	6
Current	Trends	and	Updates	in	Visual

Basic	Development
Visual	Basic	(VB)	has	long	been	a	staple	in	the	world	of

programming,	particularly	for	Windows	applications.	While	it
may	not	be	as	trendy	as	some	newer	languages,	it	continues	to

evolve,	adapting	to	modern	development	practices	and
technologies.	This	chapter	explores	the	current	trends	and

updates	in	Visual	Basic	development,	providing	practical	insights
and	examples	that	C#	developers	can	appreciate.

1.	Integration	with	.NET	Core	and	.NET	5/6

One	of	the	most	significant	trends	in	Visual	Basic	development	is
its	integration	with	.NET	Core	and	the	more	recent	.NET	5	and
.NET	6	frameworks.	This	shift	allows	developers	to	create	cross-
platform	applications,	which	was	previously	a	limitation	of

traditional	VB.NET.
For	instance,	a	C#	developer	familiar	with	.NET	Core	can	easily
transition	to	Visual	Basic	by	leveraging	the	same	libraries	and
tools.	The	syntax	may	differ,	but	the	underlying	principles
remain	consistent.	Here’s	a	simple	example	of	a	console

application	in	both	languages:

C#	Example:

using	System;

class	Program



{
				static	void	Main()

				{
								Console.WriteLine("Hello,	World!");

				}
}

Visual	Basic	Example:

Module	Program
				Sub	Main()

								Console.WriteLine("Hello,	World!")
				End	Sub
End	Module

As	you	can	see,	the	structure	is	different,	but	the	core
functionality	remains	the	same.	This	compatibility	encourages

C#	developers	to	explore	Visual	Basic	without	feeling
overwhelmed.

2.	Emphasis	on	Asynchronous	Programming

Asynchronous	programming	has	become	a	critical	aspect	of
modern	application	development,	allowing	for	more	responsive
applications.	Visual	Basic	has	embraced	this	trend	with	the

introduction	of	the	Async 	and	Await 	keywords,	similar	to	C#.
Consider	a	scenario	where	you	need	to	fetch	data	from	a	web

API.	In	C#,	you	might	write:

C#	Example:

public	async	Task	GetDataAsync(string	url)



{
				using	(HttpClient	client	=	new	HttpClient())

				{
								return	await	client.GetStringAsync(url);

				}
}

In	Visual	Basic,	the	equivalent	code	would	look	like	this:

Visual	Basic	Example:

Public	Async	Function	GetDataAsync(url	As	String)	As	Task(Of	String)
				Using	client	As	New	HttpClient()

								Return	Await	client.GetStringAsync(url)
				End	Using
End	Function

This	similarity	in	handling	asynchronous	operations	makes	it
easier	for	C#	developers	to	adapt	to	Visual	Basic,	as	they	can
apply	their	existing	knowledge	of	asynchronous	programming

patterns.

3.	Enhanced	Support	for	Windows	Forms	and
WPF

While	many	developers	are	moving	towards	web	and	mobile
applications,	Windows	Forms	and	Windows	Presentation
Foundation	(WPF)	remain	popular	for	desktop	applications.

Recent	updates	have	improved	the	performance	and	capabilities
of	these	frameworks	in	Visual	Basic.

For	example,	the	introduction	of	the	.NET	5/6	framework	has
brought	enhancements	to	the	Windows	Forms	designer,	making



it	more	intuitive	and	user-friendly.	C#	developers	familiar	with
WPF	can	easily	create	rich	user	interfaces	in	Visual	Basic	using

similar	XAML	syntax.

Visual	Basic	Example:

<Window	x:Class="MyApp.MainWindow"
								xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
								xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
								Title="MainWindow"	Height="350"	Width="525">

				<Grid>
								<Button	Content="Click	Me"	Width="100"	Height="30"	/>

				</Grid>
</Window>

This	code	snippet	demonstrates	how	to	create	a	basic	window
with	a	button.	C#	developers	will	find	the	transition	to	Visual
Basic's	XAML	straightforward,	as	the	concepts	of	layout	and

event	handling	are	consistent	across	both	languages.

4.	Community	and	Ecosystem	Growth

The	Visual	Basic	community	continues	to	thrive,	with	numerous
resources	available	for	developers.	Online	forums,	tutorials,	and
open-source	projects	provide	ample	opportunities	for	learning
and	collaboration.	Websites	like	Stack	Overflow	and	GitHub	host

a	wealth	of	information	and	projects	that	can	help	C#
developers	get	up	to	speed	with	Visual	Basic.

Moreover,	the	rise	of	platforms	like	Microsoft	Learn	offers
structured	learning	paths	for	Visual	Basic,	making	it	easier	for

developers	to	find	relevant	content	and	tutorials.	This
community-driven	approach	fosters	an	environment	where

https://stackoverflow.com/questions/tagged/visual-basic
https://github.com/topics/visual-basic


developers	can	share	knowledge	and	best	practices.

5.	Continued	Use	in	Legacy	Systems

Despite	the	emergence	of	newer	programming	languages,	Visual
Basic	remains	a	critical	component	in	many	legacy	systems.

Organizations	that	have	invested	heavily	in	VB	applications	often
seek	to	maintain	and	update	these	systems	rather	than	rewrite

them	from	scratch.
C#	developers	working	in	environments	with	legacy	VB	code	will
find	it	beneficial	to	understand	the	language,	as	it	allows	for

smoother	integration	and	maintenance	of	existing	applications.
For	example,	a	C#	developer	tasked	with	updating	a	legacy	VB
application	can	leverage	tools	like	Visual	Studio	to	work	on	both
languages	within	the	same	IDE,	streamlining	the	development

process.

6.	Focus	on	Education	and	Training

As	the	demand	for	skilled	developers	continues	to	grow,
educational	institutions	are	increasingly	incorporating	Visual

Basic	into	their	curricula.	This	trend	ensures	that	new	developers
are	equipped	with	a	diverse	skill	set,	including	knowledge	of

both	C#	and	Visual	Basic.
Online	platforms	like	Coursera	and	Udemy	offer	courses

specifically	tailored	to	Visual	Basic,	making	it	accessible	for
those	looking	to	expand	their	programming	repertoire.	C#

developers	can	benefit	from	these	resources	to	gain	a	deeper
understanding	of	Visual	Basic	and	its	applications.

In	summary,	Visual	Basic	development	is	experiencing	a
renaissance,	driven	by	its	integration	with	modern	frameworks,

emphasis	on	asynchronous	programming,	and	continued
relevance	in	legacy	systems.	For	C#	developers,	understanding

https://visualstudio.microsoft.com/
https://www.coursera.org/
https://www.udemy.com/


these	trends	not	only	enhances	their	skill	set	but	also	opens	up
new	opportunities	in	a	diverse	programming	landscape.




