
Identifying	and	Resolving
Python	Memory	Leaks

Author:	remko.online

Year:	2024

https://remko.online/

Identifying	Memory
Leaks:	Tools	and

Techniques
Memory	management	is	a	crucial	aspect	of	programming,	especially
in	languages	like	Python,	where	developers	often	rely	on	automatic
garbage	collection.	However,	even	with	these	conveniences,	memory
leaks	can	occur,	leading	to	inefficient	memory	usage	and	potential

application	crashes.	In	this	chapter,	we	will	explore	practical	tools	and
techniques	for	identifying	memory	leaks	in	Python,	ensuring	that

your	applications	run	smoothly	and	efficiently.

Understanding	Memory	Leaks
Before	diving	into	the	tools	and	techniques,	it’s	essential	to

understand	what	a	memory	leak	is.	A	memory	leak	occurs	when	a
program	allocates	memory	but	fails	to	release	it	back	to	the	system
after	it	is	no	longer	needed.	This	can	lead	to	increased	memory

consumption	over	time,	ultimately	exhausting	the	available	memory
and	causing	the	program	to	slow	down	or	crash.

Example	of	a	Memory	Leak

Consider	a	simple	Python	function	that	creates	a	list	of	objects	but
never	clears	it:

def	create_memory_leak():
				leak_list	=	[]

				for	i	in	range(100000):

								leak_list.append({'index':	i})

In	this	example,	leak_list 	continues	to	grow	with	each	function
call,	consuming	more	memory	without	ever	being	released.	If	this

function	is	called	repeatedly,	it	can	lead	to	a	memory	leak.

Tools	for	Identifying	Memory	Leaks
1.	objgraph

One	of	the	most	effective	tools	for	identifying	memory	leaks	in
Python	is	objgraph .	This	library	allows	you	to	visualize	object
references	and	track	down	what	is	holding	onto	memory.

To	use	objgraph ,	you	first	need	to	install	it:

pip	install	objgraph

Here’s	a	simple	example	of	how	to	use	objgraph 	to	identify	memory
leaks:

import	objgraph

def	create_leak():
				leak_list	=	[]

				for	i	in	range(10000):
								leak_list.append({'index':	i})

create_leak()
objgraph.show_most_common_types(limit=10)

This	code	will	display	the	most	common	object	types	in	memory,
helping	you	identify	if	there	are	unexpected	objects	consuming

memory.

2.	memory_profiler

Another	powerful	tool	is	memory_profiler ,	which	provides	line-by-
line	memory	usage	statistics	for	your	Python	scripts.	This	can	help

pinpoint	where	memory	is	being	allocated	and	not	released.

To	install	memory_profiler ,	use:

pip	install	memory_profiler

You	can	then	use	it	as	follows:

from	memory_profiler	import	profile

@profile
def	my_function():

				a	=	[1]	*	(10**6)		#	Allocate	memory
				b	=	a

				del	a		#	Remove	reference	to	a
				return	b

my_function()

Running	this	script	will	give	you	a	detailed	report	of	memory	usage,
allowing	you	to	see	where	the	most	memory	is	being	consumed.

3.	tracemalloc

Python’s	built-in	tracemalloc 	module	is	another	excellent	option
for	tracking	memory	allocations.	It	allows	you	to	trace	memory	usage

over	time	and	identify	where	memory	is	being	allocated.

To	use	tracemalloc ,	you	can	start	by	enabling	it	at	the	beginning	of
your	script:

import	tracemalloc

tracemalloc.start()

#	Your	code	here

snapshot	=	tracemalloc.take_snapshot()
top_stats	=	snapshot.statistics('lineno')

print("[Top	10	memory	usage]")
for	stat	in	top_stats[:10]:

				print(stat)

This	will	provide	a	snapshot	of	memory	usage,	helping	you	identify
the	lines	of	code	that	are	responsible	for	the	most	memory

allocation.

Techniques	for	Resolving	Memory	Leaks
Once	you	have	identified	potential	memory	leaks	using	the	tools
mentioned	above,	the	next	step	is	to	resolve	them.	Here	are	some

practical	techniques:

1.	Weak	References

Using	weak	references	can	help	prevent	memory	leaks	by	allowing
the	garbage	collector	to	reclaim	memory	when	there	are	no	strong
references	to	an	object.	The	weakref 	module	in	Python	provides	this

functionality.

import	weakref

class	MyClass:

				pass

obj	=	MyClass()
weak_obj	=	weakref.ref(obj)

print(weak_obj())		#	Outputs:	<__main__.MyClass	object	at	...>
del	obj

print(weak_obj())		#	Outputs:	None

In	this	example,	once	obj 	is	deleted,	the	weak	reference	no	longer
holds	onto	it,	allowing	for	proper	garbage	collection.

2.	Explicitly	Deleting	References

Sometimes,	simply	ensuring	that	you	delete	references	to	objects
when	they	are	no	longer	needed	can	help	mitigate	memory	leaks.

Using	the	del 	statement	can	be	effective:

def	create_and_clear():
				leak_list	=	[i	for	i	in	range(100000)]

				#	Do	something	with	leak_list
				del	leak_list		#	Explicitly	delete	the	reference

By	explicitly	deleting	leak_list ,	you	signal	to	the	garbage	collector
that	the	memory	can	be	reclaimed.

3.	Using	Context	Managers

Context	managers	can	help	manage	resources	effectively,	ensuring
that	memory	is	released	when	it	is	no	longer	needed.	Using	the	with

statement	can	help	encapsulate	resource	management:

class	Resource:
				def	__enter__(self):

								#	Allocate	resource
								return	self

				def	__exit__(self,	exc_type,	exc_val,	exc_tb):
								#	Release	resource

								pass

with	Resource()	as	res:
				#	Use	resource

				pass		#	Resource	is	automatically	released	here

In	this	example,	the	resource	is	automatically	cleaned	up	when	the
block	is	exited,	reducing	the	risk	of	memory	leaks.

By	employing	these	tools	and	techniques,	you	can	effectively	identify
and	resolve	memory	leaks	in	your	Python	applications,	ensuring

optimal	performance	and	resource	management.	As	you	continue	to
explore	Python	programming,	remember	that	proactive	memory

management	is	key	to	building	robust	applications.

For	further	reading	on	memory	management	in	Python,	you	can
check	out	the	official	Python	documentation	on	weak	references	and
the	memory_profiler	GitHub	page	for	more	examples	and	use	cases.

https://docs.python.org/3/library/weakref.html
https://github.com/pythonprofilers/memory_profiler

